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Abstract

Collision-free optimal motion and trajectory planning for robotic
manipulators are solved by a method of sequentisl gradient restoration
algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic
manipulator are demonstrated to show the excellency of the optimization
technique and obstacle avoidance scheme. The obstacle is put on the
midway, or even further inward on purpose, of the previous no-obstacle
optimal trajectory. For the minimum-time purpose, the trajectory grazes
by the obstacle and the minimum-time motion successfully avoids the
obstacle. The minimum-time is longer for the obstacle avoidance cases
than the one without obstacle. The obstacles avoidance scheme can deal
with multiple obstacles in any ellipsoid forma by using anificial potential
fields as penalty functions vis distance functions. The method is promising
in solving collision-free optimal control problems for robotics and can be
applied 10 any DOF robotic manipulators with any performance indices and
mobile robots as well. Since this method generates optimum solution based
on Pontrysgin Extremum Principle, rather than based on assumptions, the
results provide a benchmark against which any optimization techniques
can be measured.

Key words Bang-bang contrel, optimal control, Cartesian space, joint
space, robolic manipulators, degree-of-freedom.

1. Introduction

The problem of increasing productivity, automated manufacturing,
and performing complex tasks in hazardous or remote environments can
be solved by robotic systems. Such systems have been applied 1o & wide
varicty of industries which includes spray painting, welding, assembling,
material handling, highly risky work and remote control jobs. As pointed
out by Holcomb and Montemerlo [1] and Lemer [2], remote control robotic
systems will be developed in the future space stations. Also a1 well-
known, with the demand of increasing productivity and industrial
automation, the problem of controlling the robotic manipulators has
received & great deal of interest in the field of automated manufacturing.

1.1 Research Objectives

One of the focal points in robot design lies in the computation and
control of the motion of the manipulator. In order to make sure_ that the
manipulstor is able to execute a special task moat efficiently for human
beings, it is important that the manipulator performs from initial states to
designated final states in an optimal way under collision wvoidance
concern. Control on robotics can be separated into two major categories: 1)
trajectory planning, 2) trajectory tracking. Various optimal controllers
need to be devised in the trajectory tracking problems which are not the
subjects in this article. Trajectory planning is not only the determination of
the path of the end effecior. Trajectory planning generates a specified
motion of time history from initial states to final siates. Motion planning
does not necessarily require optimization techniques but extra excursion of
the robot s just not cosi-efficient and can cause more potential collision
problems. Obviously, the minimum-time trajectory It of particular interest
since the productivity In automation 1t maximized. Various performance
goals, for example: distance, energy or time-energy combination, are also
applicable. Various concepts for the study of optimal control of robotle
manipulators have been mudied for this purpose.

1.2 Previous Work

One of the pioneered work is done by Kahn and Reth [3]. The highly
nonlinear manipulator dynamical equations of motion are linearized, an
approximate bang-bang 1olution has been developed to the suboptimal
fecdback control problem.

Gilbert and Johnson [4] have developed a path planning scheme in
which the obstacles mre avoided via an infinite penalty function generated
from distance function. In their swdy, the nonlinear dynamic equations
are approximated by linear subspace funclions which are chosen as
piecewise polynomial splines. In their examples, distance constraints are
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violated when spline knot interval scctions equal to one; the payload object
is made strictly convex by approximating its boundary by arcs of certain
curvsture; obstacles are arumed to be convex seis; the complex distance
finding minimization problem within the optimal control problem is not
fully described. In the optlmization technique, more than one optima can
be drawn at the same case.

Based on Pontryagin exitemum principle, the time-optimal motions
of various types of robotic manipulators have been investigated by
Geering, Guzzella, Hepner and Onder [5] as classified by cylindrical,
spherical robots, and a robot with horizontal articulated arm  with two
links. In the analysis of the time-optimal control problem, the bang-bang
control solution satisfies the Pontryagin extremum principle and the study
has been made for unconstrainted trajectories. In their examples, two links
intercross each other in the planar two-link manipulator.

Duc to the difficulty of highly nonlinear robot mathematical model, a
near-optimal control algorithm based on Pontryagin extremum principle
and Riccati formulation has been presented by Kim, Jamshidi and
Shahinpoor [6]. The algorithm reduces the original nonlinear equation set
into a linear one by s parameter sensitivity method and P-D controller is
used to solve the linearized model.

Ozaki and Mohri [7] has developed the study of collision-free joint
trajectories along & given path with some physical constraints such as
manipulator dynamics, obsiacles avoidance, joint velocities and input
torques by formulating artificial polentials into the planning problem for
constraints using linear programming algorithm to minimize the error
between present and desired trajectory, In which, the nonsmooth time
functions were approximated by cubic spline functions.

The technique of dynamic programming has also been & popular
solution method to many investigators in the ficld of robotic manipulators
research. Based on dynamic programming, Vukobratovic and Kircanski {8]
have determined the energy-optimal velocity distribution of the
manipulator end-effector for a prescribed path in the workspace subject to
the forcesftorques constraints. The given traveling time needs to be
discretized in their study.

Singh and Leu [9] have formulated and solved the optimal trajectory
planning as sn optimal control problem by a path parameterized method of
dynamic programming under the constraints of the joint forces/torques
and velocities. Bang bang control has been generated for minimum time
problems without obstacles avoidance

In order to implement dynamic programming approach, Shin and
McKay [10] have studied trajectory planning of robotic manipulstors using
parametric function and its derivative 1o reduce dimensions in siate space
which finds the positlons, velocities, acceleratjons, and torques of the
problem by minimizing the cost of the parameter of moving & robotic
manipulator along a specified geometric path subject to input torque/force
constraints without obstacle avoidance concern. Along & pre-selected
geometric path, for quadratic velocity bounds, and piccewise analytic
geometric path constraints, the minimum.time control problem has been
studied by Shin and McKay [11] with the phasc-plane techniques in
Carteslan space which has 1o be converted Into joint space by Interpolation.
Under the assumption that the path is given ax parameterized curve, they
have also determined s near-minimum time geometric path for the study
described above which minimizes approximate lower traversal time
bounds using maximum velocity bounds {12]. Their techniques are limited
by parameterization.

Bobrow, Dubowsky, snd Gibson [13] have sudied the problem of
minimum-time trajectories along arbitrary pre-planned spatial paths by 3
pecial technique in which the actuator torqus bounds are assumed to be
functions of the robot's current position and velocity. This technique
cannot handle the case when the feasible regions in the phase plane are
not simply connccted. The idea of the time-optimal solution is based on
choosing the maximum acceleration/deccleration 1o make velocity a1 large
as possible at every point without violating consiralnts. The difficulty 1s
finding multiple switching points for time-optimal problems. Dubowsky,
Norris and Shiller [14] have devised a time optimal trajectory planning
scheme with obstacle avoidance consideration vis & CAD approach in which
the minimum distance to obstacles is found from software OPTARM II by a
tble of various geometric shape. The penalty function for obstacle
avoidance needs to have a characieristic of more effective weighting and




dramatic steep The haig cannot be casily exiended to solving
oplimal trajectory planning for other performance indices and constraints.

Based on the same assumption, Rajan [15] has devised a
parameterized path method for the minimum-time problem in which the
cubic spline paths arc parameterized and optimized locally by an iterative
scheme. The optimization procedurc stops uniil the minimum-time path
comes closc enough 1o the previous path while using Bobrow's algorithm
for inner minimization and varying the path for outer minimization. The
algorithm cannot be effectively applied to the planar movemenis of a
manipulator with obstacles in the workspace. The weak points of the
algorithm are on the premises that the minimum time path is smooth and
a smooth curve is well approximated by splines.

Sahar and Hollerbach [186] have devised a method based on wate-
space search tree representing all possible solutions, and searching for the
best one by using a Symbolics Lisp Machine for time-minimum criterion.
The algorithm is u logical approach but not a mathematical approach which
is not suitable for routine off-line trqecmry phnmng due 1o the
complexity of computation, —- - - - - -

Luh and Lin [17] have devised & kinematical lppro-ch which
assumes the path consists of a sequence of Cartesian straight line segments
and constant limits on Caresian velocity and lcce]enuon are known &
priori without considering the dynamics of the amm.

Weinreb and Bryson [I8] have presented the Adjustable Control-
Variation Weight (ACW) salgorithm for the minimum-time conirol of a two-
link robotic arm through choosing controls subject to the actuator
constraints. In their examples, the two links of the planar manipulstor
intercross each other. Meier and Bryson {19] have developed an algorithm
for solutions of time-optimal conitrol problem of a two-link planar
manipulator which contains solutions for two-point boundary value
problem of consirainted motion between two endpeints.

Zhang and Wang [20] have investigated a collision-free time-optimal
control problem of a two-link planar robotic manipulator by applying the
method of global linearization transformation in joint space configuration.
As a result, the nonlinear cquations of motion are transformed into an
equivalent lincar model and an approximate explicit expression has been
obtained for the case of minimum-time control of a two-link planar robotic
manipulator with 1wo-dimensional planar geometrical obstacle avoidance.
In their example, radivs of the circle obstacle is not shown.

Bobrow [21] has continucd the study of optimal path planning using
minimum-time criterion with obstacles avoidance consideration in which
the actuator torque bounds are a d to be f ions of the robot's
current position and velocily, where the Carntesian path of the ead-effector
is represented with uniform cubic B-spline peolynomials. The obstacle
avoidance is enforced by ensuring the distance between the end-effector
and the obsiacle which was evaluated by stepping small incr 1ts of the
path parameter. -

Wang [22] has devised the numerically approach of using sequential
gradient restoration algorithm to solve Bolza classical optimal control
problem on robotics without Iincarization or parameterization, including
the anslytical time-optimal solitions of a two-link manipulater and/or
actuator constrainted cases, in which the implementation can be extended
into obstacle avoidance consideration.

1.3 Overview

We can see that numerous silempis have been made to find
collision-free optimal motion of a robotic manipulator without “great
suctess. All of the aforementioned investigations are limited in one way or
another.

Collision-free optimal control problems for robolic manipulators are
difficult due to the two-point boundary-value problem which involves, in
addition to the optimality conditions, the kinematical and highly nonlinear
dynamical cquations of the & the obsétacle constraints, the Timits
imposed on controls, and the satisfaction of terminal conditions. Generally
speaking, analytical solutions for classical optimal control problems with
cquality and/or inequality constraints sre not possible. Therefore,
numerical method is resolved. Numerical methods and computer routines
are available nowsdays ranging from simple integration to TPBVP and
optimization st a low price [23].

To solve constrainted optimal control problems, a restoration phase is
needed at the end of the gradient phase [24]. The collision-free motion
planning problems of robotics can be formulated as a classical optimal
conrol problem and solved by sequential gradient restoration algorithm
{25]. Col!izién can be avoided by cominuously comro!ling lhe closest point

functions via duuncc functions [26].
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1.4 Present Modeling

As pointed out in recent research, owing to the difficulty of solving
TPBVP and highly nonlinear dynamic equations, the classical optimal
control problem is mostly approached by approximation (linearization,
paramelerization, modification) which more or less replaces the original
optimal control problem into the assumed onc. As in those study where the
nonlinear dynamic equations or the Iwo-point boundary value problems
are linearized or parameicrized, the solutions generated based on those
a ptions are not ily good approximations to the original ones.
The intention of this research is to present & numerical approach for

determining the collision-free optimum motion of robotic manipulators, a
method to solve classical optimal control problem without any
modification, linearization or simplification. Solutions including robot
potitions, velocities, accelerations and force/torque in both Cartesian space
and joint space which satisfies the Pontryagin extremum principle are
obtained by solving the manipulator kinematical and dynamical equations
with opumalny conditions. For given lmuul and final | conditions, under the

physical conditions imposed on control in joint space and obstacles
constraints, the continuous umc hulory of the positions, velocities,

accelerations, torques/forces and the optimal collision-free motion of a
robotic manipulator in minimum time are determined.

Applications of sequentisl gradient restoration algorithm occur in
various branches of science and engincering. With panticular regards to
aerospace engineering, various problems of coplanar and noncoplanar,
orbital and suborbital space flight [27, 28, 29] and atmospheric flight in a
windshear [30, 31, 32] have been solved by the sequential gradient
restoration algorithm. Also, the samé technique has been successfully

employed in the thermofluid science [33, 34]. In general, sequential
gradient restoration algorithm has proven to be a very promising
algorithm in solving enginecring optimal control problems [35, 36].

1.5 Advantages over Existing Techniques

To solve collision-free optimal control problems on robolics with
constraints, we need a numcrical method which has the following
advantages:
1) able 1o solve TPBVP which is essentially the core of the problem [6, 8,
10, 11, 12, 13, 14, 15, 21} In facti, TPBVP can be solved by shooting
method and relaxation method or method of particular solutions. TPBVP is
involved in the First- ordcr ‘exacl optimality conditions derived from
calculus of variation, o
2) able 1o solve highly nonlincar dynamic equations without lincarization,
paramelerization or simplification {3, 4, 6, 7, 10, 11, 12, 17, 20, 2i}: Any
modification by lincarization or simplification directly or indirectly
replaces the original problem. The drastic approximation leads to
significant error and unsatisfaciory, unknown effect 1o the optima and the
obstacle avoidance. For example, a collision-free optimal solution can be
declared only when there is not snother more optimal solution.
3) able 10 solve any robotics formulation regardless number of joints or
DOF [15, 17, 18, 19, 20): A technical spproach should not be limited by the
number of joints or DOF of robotics. Any dynamic systems can be
formulated from state functions point of view and solved as control
sysiems rcgardless number of dimensions.
4) able 1o avoid the obstacles toward optimization direction without any
unnecessary excursion {5, 7, 8, 9, 14, 15, 20, 21} Collision svoidance should
be achieved in a most efficient way, In terms, an optimal way, without
requiring extra journey of the robot arm. The weighting effect and
clearence between trajectory and obstacle should be specified by only one
parameter.
5) able 10 solve general constraints of robot motion planning: On trajectory
planning, we have state constraints, control constraints, or & combination of
the above. Obstacle incquality constraints, control inequality constraints
can be transformed into cquality constraints.
6) able to solve any terminal conditions, any performance indices [3, 13,
14, 15, 18, 21): In various applications, varicus performance indices need
10 be implemented. For cxample, time, distance, energy or a combination of
the above. Point to poinl task has different initial and" final states in
applications.
7) has the potential to fully utilize computer power ss the comptuler
industries grow in the near future: Several years from now, computers can
be many times faster in CPU. We don't reject any ideas which consume
more CPU time than we can afford today. On the contrary, we cncourage
numerical method that fully utilizes the modern scientific computing
concepts. Provided we have infinitesimal small stepsize and infinite digits,
and we_have sufficient CPU time on computers, this calculus of variation
approach generates solutions which satisfy exacl necessary conditions.
Sufficient conditions can also be checked.




1.6 Drawbacks

There are cerainly some drawbacks:
problem within the optimal control problem at each lime stage is d.ift.'icuh.
For more complex manipulaters and general obstacles, the mm}mum
distance can be found through optical devices or solid modeling technigues.
In common sense, a human being has to sense (by eyes) obstacles and
potential of collision before he/she can think about avoidance. 2) Due to
the consumption of huge amount of CPU time, the method is good vt'or off-
line programming but is not yei ready for real-time, on-line applications.
This is a tradeoff for a new promising technique.

1) Minimum distance finding

1.7 Contents )
A brief description of the dynamic systems and constrainis are given
Section 4

contalnt the sequential

. . . . e
in section 2. Section 3 coniaing the obsiacles avoidance

contains the optimal control theory. Section 5
gradient restoration algorithm. In Section 6, numerical examples of a two
degree-of-freedom robotic manipulator are demonstrated. The insight of
collision-free minimum-time motion are shown In captions and tables.
Finally, discussion Is in section 7, conclusion and prospective research are
presented in section 8. Appendix A itiustratess the kinematics of a 1wo-
link manipulator example.

2. Dynamlc Systems and Constraints

The highly nonlinear dynamic equations and inequality control
constraints and/or inequality state constraints are alio the main
difficulties of optimal control on robotics.

2.1 Dynamics

Under the assumption that the links are uniform rods of mass mjat
the mass center, of moment of inertia Ij, of length I;, respectively, i is the
number of the link. The gravity g is acting parallel to the negative y-axis
direction. The dynamical equations can be derived by means of Newton-
Euler (Lagrange-Euler) equations [37, 38, 39] or symbolic method [40] and
expressed in general as:

T =M(8)a + C(6,0) + G(8) N n

where T is the vector of applied torques/forces, M (8) is the inertial matrix
terms of the manipulator, C(8,) is the vector of centrifugal and Coriolis
terms, G (8) is the vector of gravity terms. For example, a two-link
manipulator in Fig. 1. [16]:

0,1

62

0y

0,0 o M
Fig.t. Two-link robotic manipulator

Link 1 of my,1;. 1

Link 2 of m2,12. 12

11+12+(m 1 2+m3la2)/4+ mal 2+ makilacos82 T+ (m2l22)/4+(m3l12c0802)/2
M(8)= T2+ (m2l22)/4+(m2lilac08082)/2 Ip+(malz2)/4 12
)
c -mz]}28in82(02)2/2-m2l1 125in82(w1 )(w2)
(8,m) mal;lasin82(w1)2/2
3)
m1lzcos{81+02)/2+11(m1/2+mz)cosly
G(e):g( malacos(81+62)/2 ) ®

One can sce that these highly nonlinear terms arc functions of the
joint velocities and angles. 9, wj, 0] &re relative angle, angular velocity, and
angular acceleration of link i respectively.
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2.2 Control Systems and Inequality Control Constralats
Robotics dynamic system can be formulated in two ways:

2.2.1 Kinematical Formulation

Kinematical formulation is practical in most cases, specially when the
model reference dynamic parameters arc not known in advance. For
example, the payload is never known ahead; or for safety reason that the
inertia force caused by acceleration of the robots shall be limited. In
kinematical formulation, the control system is as follows:

8= &)
&=a (6)

8, w, a are vector of state variables. Once the states In joint tpace of the
manipulator are known, we can compute the joint torques which are
required to balance the reaction forces/moments acting on the links. The
physical inequality constraints Imposed on the robot in this study are joint
acceleration bounds [20]. With these constraints, we can limit the torques
which are related to the joint space configuration. In terms,
lats C, (7)
Vis the following variable transformation, the joint acceleration can be
limited within the bounds

=Csin(u), (8)

C is vector of upper bounds of the absolute acceleration in joint space. uis
vector of the new control variable.
2.2.2 Dynamical Formulation

If we know the model reference system in advance, in dynamical
formulation, the control system is as follows:

3
0=-w 9)

©=M-1(T-C0.)-G(®)) (19

8, ®, o arc stale variables. In this formulation, we assume the dynamic
parameters in matrices M,C, G, are known. The matrix M is always both
"symmetric and positive definite” [38], therefore always invertible. The
physical inequality constraints imposed on the robot in this formulation
are joint torque/fforce bounds. With these constraints, we can limit the
torques in the actualor space configuration. In terms,
1715 C, an
Via the following variable transformation, the joint torque can be limited
within the bounds
Ti=Cisin{uy), (12)
C is vector of upper bounds of the absolute torque in acluator space. uis
vector of the new control variable,

2.3 Equality Constrainis

In some cases, the end-effector has to follow u specified path, or the
orientation of the arm in the motion is specified and fixed, for example, the
robot arm is holding a flash light moving along a specified path, then, the
degree of freedom is reduced by the number of constraints. One or more
state constraints have to be added in Cartesian space, then converted into
joint space. The system is solved with replacement of the algebraic
cquation into the state variables according to the constraints.

3. Obstacles Avoidance Schemes

By definition, obstacles can be avoidable or unavoidable for & fixed
configuration. Configuration has to be fixed in one task to avoid excess
excursion and changing kinematics. For examples, in Fig. 2., the obstacle is
away from the robot chassis but within the work ecnvelope. That is
considered ag avoidable. In Fig. 3., obstacles are too close to the robot and
there is no space for feasiblly moving the robot arm through the obstacle
environment. This is considercd as unavoidable.

For simplicity, each obstacle is put into an ellipsoid. It is a lide
wasteful to put an obstacle which is not necessarily in ellipsoid shape into
an cllipse. The advantage is the ellpsoid parameters can be changed to



shapen the oral into the figure of the obstacle without wasting too much
space. Collision avoidance can be achieved by continuously controlling the
closest point on the arm to the obstacles.

UP U‘

1 0,1 1.0,1

>

]

0,0 1,0
Fig. 3. Unavoidable Obstacles

0,0 1,0
Fig. 2. Avoidable Obstacle
3.1 States Inequality Constraints

Let Qq denotes the i-th obstacle elflipsoid function among m obstacles.
The obstacle constraint is:

Qi = 29(x-x0)? + bo(x-x0)(y-y0} + co(y-yo)2 + fo = O (13)

For collision avoidance, it is a must that at all times, for the closest point on
the arm,

Q20 (14)

3.2 Distance Functions

Distance function Dy is defined as the function Qi{x,y) from the
closest point (x, y)on the arm to the i-th obstacle.

The position on each link can be identified by

=KHA(X-X) Y=Y +A(y2-y) (15)

in tems, x, y are funciions of a parameter A. xj, y1, X3, y2 are Cartesisn
coordintes al end points of the links.

Substituting (x, y). Qi{x, y) becomes s function of parameter . To
find the closest point from the arm to the obstacle, we take differentiation
and find minimum Qversus A

Qo

ey (16)

inks to the obstacle. In
>int happens (o be on the

then, Dyis choosen among the closest points on
most of the avoidable obstacle cases, The closest |
forearm a1 end-effector.

When Dy=0, it means the am touches the i-th obstacle at the closest
point. When Dyis infinitesimally small, it means the arm grazes the i-th
obstacle.

3.3 Virtual Potential Fleld Penalty Function Method {P1)
The penalty function Py is defined as

S1= exp(Dy/aj)-1 uan
Piag- Size (18)
Py=r Si<e 19)

2 i3 & small number which denotes the dramatic steepness factor berween
the trajectory and the i-th obsiacle where the penalty becomes active. T is
8 huge number on the edge of the precision boundary that causes

computer overflow. e i1 & tiny number on the edge of the precision

boundary that causes computer underflow. The Mérit of this infinite ™~

penalty function ls by choosing a small number 8j, one can define how
close the trajeciory is allowed to clear the i-th obstacle. By Increasing the
value aj, one can supplant the steepness of the penalty function 1o the
trajectory will never get into the obstacles” forbidden area. As D increases,
P sharply decreases, ie. almom no penalty in farther distance; as D
decroases, P dramaticslly increases, i.e. 3 sudden increase of a penalty
barrler in the goal function for obstacle svoidance, As soon & P dominates
the goal function, the problem changes from a minimum-goa! one into an
obstacle avoidance one. See Fig. 4. s following:
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Infinite

4

a=10
Fig. 4. Penalty function versus distance function diagram
For this optimal control system, we have formulated 8, ©, @ as stale

variables x; was control variables. For the time-optimal problem, the

performance index is:

I=n+_[‘ ® Py(1) dx (20
(]
m
Py(t) = T Pi(r) @n
=}

Boundary conditions are initial states x(D), and final states x(I) of spe:ifiec!
values. Once the stales and the controls are computed, the required

reacting torques T can be solved from Eq. (1)

3.4 Violation Compensation Penalty Function Method (P2)
The penalty function P; is defined as

Pi=0 D20 (22)

Pi=-(D;-¢)} D<o (23)
€ is a small number. This penalty is a negative compensation function via
the distance function. The merit of this penally function is to force the
violation of the obstacle constraint out as the negative sign indicates.

For this optimal control system, we have the same state variables
and control variables as above. For the time-optimal problem, the new
performance index is:

1=3+J'o’ % Pylr) de (24
Py)= ¥ W, Py(1) (25)
il

Tty 1,

W is a weighting factor for the corresponding p

3.5 Variables Transformation Method (P3)
For collision id; , by i ducing a new variable z,

© Qi = 10(x-%0)2 + bo(x-x0)y-¥0) + coly-yo)? + f = 22 (26)
¥ = { atxxp)t + bo(x-20)}2+ B0 (y-yo3 £12 + coty-yayb 1z
(27)

where !, g', are the time diffrentistion of x, y. We add one or mors
differentis] constraints to the control system. For this optimal control
tystem, we have formulated 8, o, c, zas sate variables x; uas conteol
. the perf: index is: 1 = x

Imal (R

variables. For the time-op P

e



3.6 Time Scaling
In the above sysiems,
\finai=1 via the following wransformation:  1=XT1,

parameter which represents the final time.

time has been nommalized from tinitiat=0 to
e , dt=ndt. misa

3.7 Minimum Distance Problem
For the minimum-distance problem of the end-effector in Cartesian

space, the performance index can be replaced by:

1 1
1= jo 7 (va2 + vy2)l/2dy + IO n Pg(x) de (28)

3.8 Primal Formulation
Optimal control has the characteristic of duality [41, 42]. In this

study, the sequential gradient restoration  algorithm s employed in

conjunction with primal formulation.

4. Optimal Control Theory
The optimal control problem [43] is described in general as follows:
With respect to the vectorial state variable x(1), vectorial control
variable u{t) and the vectorial parameter =, the problem of minimizing a

functional

1= [} ftxmmnat +Ihiamlo+ 8 m)l1 29
subject to differential constraints:

£ - eluump) =0, Ostsl, - (30)
initial conditions:

{eo(x m)}o=0, 30
and final conditions:

(32)

[w(x,m)]1=0.

where f, h, g, are scalar functions, and ¢, o, v are vectorial functions of
specified di tis s t variable. The subscript 0 denotes

the initial point, and the subscript 1 denotes the final point.

ions. ind d
P

Optimality Criteria
By introducing the Lagrange multipliers, the problem shown above

can be recast as izing the ted functional J
J=1+L (33)
subject to Eqs. (30-32), where L is the Lagrangian functional
1 .
L =Jo AT(R-(xu,m)dt + (6Tw)p + TWh (34)

The symbols A(t), @, p denote Lagrange muliipliers of appropriate
dimensions associated with the constraints. The superscript symbol T
denotes the transpose of the matrix.

optimality criteria originated from Pontryagin

The first-order
ed from Euler equations

Extremum Principle for Eqs. (29-34) can be deriv
in calculus of variation &s:

i.f,u,kx:o, Ostg (35)
fy - #ur =0, Dctsl, (36)
[} bt + G+ am0d0 + g+ Ya2=0. 6N
(-1 + hy + 0x0)0=0, (38)

39

O+ gx + W)1=0.

In terms, we seek the functions x{(t), u(t), = and the multipliers A(1), o,
p such that the feasibility Eqs. (30-32) and the optimality criteria Egs. (35-

39) are satisficd 1o certain numerical accuracy.

5.

formulation or the dual formulation,

constructed by a sequence of two-
includes a gradient phase and a restoration pl

the value of the augumented functi
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avoiding excessive
of the constraint error is decreased in one or
excessiv
restoration cycle, the value of the functional
constraints are
sequence of subo

solution is an impr
the value of the functional to be minimized. The optimal solution is

Algorithm

The sequential gradient festoration algorithm, “in either the primal
is an iterative technique which is
phase suboptimal cycles. Each cycle
hase. In the gradient phase,
onal is decreased in one step, while
constraint violation. In the restorstion phase, the value
multiple steps, while avoiding
¢ change in the value of the functional. In a complete gradient-
is decreased, while the
satisfied to & pre-selected degree of accuracy. Therefote, o
ptimal solutions  is generated. Each new suboptimal
ovement of the previous one from the point of view for

reached when the optimality error and the constraint error are both

satisfied to a certain sccuracy. Schematic diagram is shown in Fig. S:
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Let x(t), u(t), = denote the nominal functions; let X(t), UQt), ®, denote

_ the varied functions; let Ax(t), Au(t), an denote the displacements leading

from the nominal functions to the varied functions. Under the assumption
that the displacements Ax(1), Au(t), An are linear with stepsize @, where a >
0; and A(1), B(t), C denote the displacements per unit stepsize. Then the
following relations can be used for iterations:

K@) = x() + 8x(1) = x() + 0AQ) (40)
) = u() + Ault) = uft) + aB(1) 41
R =n+an=x+aC (42)

) Thus, each iteration of the gradient phase and the restoration phase
mvo].ves two distinct operations: (i) the determination of the direction
functions A(t), B(t), C, and (ii) the determination of the stepsize of variation
a.



From (40-42) and constraint conditions (30-32), one can derive the
following relations from first order variation:

A - 4xTA - 4,TB -4TC + Dy(3-4)= 0, Ostgl, (43)
(@xTA + @xTC + D)o = 0, (44)
(¥xTA + yxTC + Dry)1 =0, (45)

and from Eqs. (40-42) and first-order optimality criteria (35-39), one can
derive the following relations {rom first order variation:

% Dgfa+ 4ar =0, Ot t, (46)
B + Dgfy - ur=0, Ocesed, (47)

Co [ (4024t + (n0)0 + wih + Dyl [t + (hado +(@)1 1=0,

{48)

(A -+ wxo + Dghyo =0, (49)

(4 wap + Dggadi =0, (50)
where, in the gradient phase, Dg=1, D, =0, [£2))
in the restoration phase, Dg =0, D=1 (32)

The above [inear two-point boundary-value problem [LTP-BVP] can
be solved for the direction functions A(t), B(t), C, by the method of
particular solutions [44, 45],

Stepsize

Eqs. (40-42) define onc-parameter funclions of the stepsize « For
this parameter, the functionals I, J, P become functions of a as following:

=T T =Y(@) P =) {(53)
] Then, bisection technique is used for the one-dimension search to
find the stepsize, starting from reference itepsize ag in gradient phase,
until (i)

T(a) < 7 (0), Pla) < P, (54)

Pe is & preselected number, not necessarily small; and starting from
reference stepsize «, in restoration phase, untl (ii)

P(a) < P(0) (55)

In & complete, successful gradient-resioration cycle, the following
condition must be satisfied or the cycle is restarted with reduced stepsize.

li<lig (56)

where 1 denotes the value of the functional (29) after current cycle. L.y
denotes the value of the functional (29) after the previous cycle.

Updating suboptimal solution schemes

Once the dircction function A(t), B(1), C, and stepsize a are solved, the
states, the controls, and the parametens arc updated according to Eqs. (40-
42).
Summary of Algorithm

Let P be the square norm of the ermror associated with the feasibility

Bqs. (30-32), and Q be the square norm of the error associsted with the
optimality criteria Eqs. (35-39), then

P= [l N (20 s Newo + N (57
1 - 1
Q=L, N - fx + 4200t + J’o N(fy - #u2)dt

#NLJ (bt + (o + 06000 + s + v ]

+ N(2+hx + ox0)o + NQA + g + wap)1, (58)

where, N denotes quadratic norm operation.
Thus, numerical convergence for optimal solution can be declared

when
Psel, 59

Qseg, (60)

€1, €2 are preselected, small, positive numbers.

The algorithm iz started from providing nominal functions of u(t),
and n. The nominal functions can be provided arbitrarily, but good
nominals help convergence. The nominal controls are provided with a
standard shooting method of Modified Quasilinearization Algorithm,
followed by solving the nominal states based on nominal controls, o some
accuracy of temminal conditions.

Then, the restoration phase is siaried. Egs. (43-45) are solved with
(52) and search of stepsize in restoration phase. The one or more iteration
restoration phase is completed only until Eq. (59) is satisfied. Then, the
gradient phase is started. Eqs. (46-50) are solved with (51) and search of
stepsize in gradient phase untii Eq. (60) is satisfied for only one iteration.
The restoration phase is started again. Thus, & sequence of suboptimal
solutions is generated. Each new solution iz an improvement of the
previous one from the point of view for the value of the functiona] to be
minimized. The optimal solution ir reached when Ineqs. (59-60) are both
satisfied.

6. Numerlcal Examples

Numerical cxamples for time-opiimal control with obstacles avoidance
schemes of a two-link robotic manipulitor sre shown in this section. The numerical
and analytical solutions of time-optimsl control without obstecles can de refered to
[22]. The following physicsl psr are taken from Asada [46], Sahar and
Hollerbach {16] and Zhang and Wang [20]. The obstacle is put on the midway, or even

further inward, of the previous no-obstacle optimal trajectory on purpose. The
algorithm can be applied to any degree-of-freedom rabots with arbitrarily given
physical parameters and boundary conditions.

In joint space,

initial position (01, 82); = (0.25, 0.35) rad.

final  position (8], 82)f = (0.3208, 1.4208) rad.

initial velacity (@], o2} = (0.0, 0.0} rad/sec,
final  velocity (w1, @2)f = (0.0, 0.0) rad/scc.
accelerstion bounds (Cy, C2) = (0.5, 1.0) radf{zcc)?,
gravity constant g = 9.3 m/(sec)?.
Link 1

mass my = 50 kg, length 1} = 0.5 m, momem of inertin [} = 5.0 kg/(m)2.
Link 2
mass m2 = 30 kg, length 12 = 0.5 m, moment of inertia Iz = 3.0 kg/(m)2.

The ellipse obstacle is represenied by the following eguation:
Q = 80(x-x0)2 + bo(x-X0)y-¥0) + cO(¥-y0)2 + f0 = 0; where, fp = -(r0)2

The following symbols arc used in the tables:

Pl; Virtosi Potemial Field Pemalty Function Method
P2: Violation Compensation Penalty Function Method
P3: Variables Transformation Methed

B : Ellipse Obstacle. C : Circle Obstacle, when bg = ¢

Table 1. Comparison of Obstacles Avoidance Schemes

(P1-C) (P2.C) (P3-C)
%o (m) 0.5 0.5
¥o (m) 0.76 0.76
fo (m) 0.1 0.1 0.1

1.0 1.0 o

oo 0.0 oo
<o 1.0 “;'o “x 0
e 1074 - -
e (m) - s0x107 )
w - osx10l® -
minimum
time (sec) 2914 3.071 43317

*** denows there is no such value for the scheme.
2137 sec is the minimum tme without obstacls svoidence.
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Tebie 1. contains the insight of comparison betwsen two penaity function methods
and the vacisbles transformetion method for cirole sbstacle (bged). Circle obstacie is

cemered at (0.5, 0.76) of radles 0.1 Virual potentisl fleld penalty function has caly

one perameier and generstes graze-by § y. Vielati P fon penaity
Nnctien is difficuit to implements 34 & clear collision avoidance scheme owing to the
{abl -{ ¢ mothod avolds

infinite cembinstion of iws P V f
obstacle successfully dut is W censirainisd when the robot Is away from the

obstacies to .unuumloulq\lll.
Mzmmmdmmdum-uChhml-.

Pl (B1) (82) ) (€2

19 (m) 0.51 0.50 051 0.50

yo (w) 0.62 0.76 0.62 0.7¢
R 2 OF v eensensaenes
(] 2.0 2.0 K] 1.0

v 2.0 2.0 0.0 0o

L) 1.0 1.8 1.0 10

s (m) 104 lo:-‘" 1074 104
:-‘:‘-(::) %} ] 1.3%0 3.0 2914

3197 soe is e misimam tims wihou! chetacls aveidanes.

In Table 2., the circle snd ellipes obsiscle avoidance are listed for side-by-side
csmperison. As we 008, Ellipes {rg=0.2) is larger in size than Circls (ro=0.1). Loag axis
is 45 degree clockwiss oriented. Both El, Cl have the same cemter location mu (0.51,
o.ﬂ)nlh-mmuhmunﬂﬂhnmmnmlummu
(0.5, 0.76). Owisg to U aatra Journay the obsiacle avoidence causas, the bigger the
mhuﬂudﬂ-’mmlc.lhww time 13, in e}

F«uunkodhld,uun-lumwumﬂmdnp-ml)\nmuz.m
shown in Figs. &l11.
H;.(uu-um:ﬂnlmmln-h\huum
Fig. 7 coainine the joim angle peofile in minimum time.
Fig. § contalne the Jeint velecity profile in minimum time.
Fg. 9 ins the jeimt profils in i

Fig. 10 contains the lerque preflie In ainimun time,

Fig. 11 contains the distance Nnctien preflic in minimem tme.

time.

Table 3. Comparison of Differst Radins of Circls Obstacles.

P1 () (€2 ©9)

2o (m) 1.0 1.0 1.0

yo (m) 1.0 1.0 ¥
YT 0.8 04

L] 1.0 1.0 1.0

be 0.0 0.0 oo
o 1.0 1.0 1.0

1(m) 104 osmot 107t
:—‘:‘-(;:) 3. 2696 2137

mmumuwlnm.ﬁum.
2137 ses is the minimum tms without obetack sveidsmos.

Ia Table 3., the circle is moved te center lecation (1, ). Redius of the circle is varied
u(Cl.B.C!)-(G.G.O.S.OA).hCSm,thuuucﬂu\vut-nhpd'h
robix, 80 the minimum-lime for C3 is the same as the one without cbstacle. The
minimum-tme is longer s e cbetacle is bigger a C1, C2 cases.
lnC!uu.wlngto(hlnﬂumolduuhdupcmhyhncuon,mnamwo
curves PP on the traj y. One curve is for previeus optimal irajectery
without obstscle svoidance scheme, nncther ens s eptimal trajectory with obsincies
avoléance scheme and obstacle is outside the work eavelop.

6.1 Severs Obsincle
In joint space,

Aveldance

initial position (9], 02); = (0.349, 0.628) rad.
final position (87, 83)r = (0.497, 0.855) rad.
initial velocity (w), ®2)ij~ (0.0, 0.0) rad/ssc.
firal  velocky (e}, @2)f = (0.0, 0.0) rad/sec.

461

The followlng case study shows: the arm started near the edge of one side of the
obstacle and ended noar the sdge of another side of the obmacle.

Table 4. Severs Obsiacle Avoidance.

(P1.C) (P2-C)
xp (m) 0.667 0.667
yo (m) 0.667 0.667
ro (m) 0.1 0.1
0 Lo 10
bo 0.0 0.0
L] 1.0 1.0
1 {m) 1073 -
e (m) - 0.2x10"!
w - o.5x10®
minimum
time (sec) 2.300 2911

#%¢ donows there Is o such value for the scheme.
1.088 sec is the minimum tUme without obstacls avoidance.

As we sce, minimum-time control is not necessarily related 1o miInimum-distance of
the end-effector. The collision avaldance scheme has excellence 10 move around and
avold severe obstacle,

7. Dliscusslon”

The insights of the merit of the optimal obstacles avoidance are
shown above in Fig. 6-15. All the obstacle avoidance trajectories have the
following characteristics: 1) grazing by the obstacle. 2) irying lo achieve
previous no-obstacle trajectory at near bang-bang control for minimum-
time. (At least one joint bang-bang control is the solution for minimum-
time without obstacles avoidance) 3) achieving previous no-obstacle
optimal trajectory with collision avoidance scheme in the cases of no-
obstacles. 4) being able to move around and avoid the severe obstacle.

Vinual potential penalty function method does not cause obstacles
constraints violation or over-constrained situation, is the one and only best
method. Violation compensation method is difficult to implement owing to
the two weighting factors which causes a little obstacle constraint violation
from time 10 time. Variables transformation method is over-constrainted
when the obstacles are away from potential collision. This discussion
matches the one in [4] even though the implementation of penalty function
is different. This spproach also illustrates the experimental results for
optimization with inequality and/or equality constraints.

As we can secc from the comparison tables, the minimum-time of
collision-free optimal trajectory is relatively depended on the size and
location of the obstacles. The jerk control can be overcome by achieving a
near optimal motion in which the trajectory is farther away from the
obstacle and the minimum-time is longer.

More intensive research need to be done on minimum distance
finding through optical devises or solid modeling. Since the robot
manipulators are usually constructed by connected links, in most of the
cases, we can say obstacles avoidance for fixed configuration is equivalent
to the end-cffector obstacle avoidance even though this statement is not
true in general. We have 1o solve end-effector obstacles avoidance before
we solve other type of problems because the object is usually on the grip.

The numerical experiments have been done on IBM AS9000
mainfraim and VAX 8800, are also attempted to be done on Macintosh. The
CPU time for current rescarch varies from 20 minutes (IBM) to one hour
(VAX). The accuracy also varies from machine 10 machine without very
much diffi As the comp industries are growing, the CPU time or
accuracy is not a problem for future scientific computation.

The numerical results are constructed by 100 cycles and 300
iterations whichever reached first. The convergence is fast at early stages,
it slows down after the sub-optimal solutions come close to the optimal
solution, To save compulation, one can set up lower limits for cycle,
iteration and CPU time, 3o near-optimal solutions will be genersted based
on Pontryagin Extremum Principle.

CRIGINAL PAGE IS
OF POOR QUALITY



8. Conclusion

In this paper, collision-free optimal motion and trajectory planning
for robotic manipulators arc solved by a method of sequential gradient
restoration  algorithm. Numerical examples of a two degree-of-freedom
robotic manipulator are demonstrated. The obstacle is put on the midway,
or even further inward, of the previous no-obstacle optimal trajectory on
purpose. For trying 1o achieve previous no-obstacle trajectory, the
trajectory tangentially grazes by the obstacle and the minimum-time
motion successfully avoids the obstacle. The minimum-time is longer for
the obstacle avoidance cases than the one without obstacle. All the
numerical expefiments indicate the obstacles avoidance scheme has the
same characteristics which allows the trajectory gets as close to the
optimal as possible but barely graze by the obstacle. The weighting and
effective point of the penalty can be defined by one parameter which
justify the closeness between the trajectory and the obstacle. The
trajectory will try 10 achieve optimization under the obstacles barrier. This
is the most outstanding characteristic than other schemes 1o achieve
collision svoidance and also find the optimal motion without extra
excursion.

The obstacles avoid h cen deal with multiple obstacles in
cllipsoid forms by continuously controlling the closest point from the arm
1o the obstacle using virlual potential fields as penalty functions via
distance functions, The algorithm is very promising in solving collision-free
optimal contral problems for any degree-of-freedom robotic manipulators
with any performance indices and mobile robots as well. The minimum-
time motion is at least one joint bang-bang conirol or near bang-bang
control with obstacles avoidance, no matter the controls are imposed on
angular accelerations or on actuator torques. The minimum-distance
trajectory without obstacles is a straight line.

Since this algorithm generates true local minimum solution based on
Pontryagin extremum principle, rather than based on approximations, the
results provide a benchmark agsinst which any other optimization can be
measured.

The perspective research is lo investigate the result of optimal
solutions for robotic manipulators when the controls are imposed on
actuator constraints, and/or with moving obstacles avoidance under
different performance indices; and model-reference adaptive optimal
feedback control.
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Appendix A: Kinematics of a Two-Link Robotic Manipulator

In general, the kinematics, dynamics, control and constraints study of
robot can be found in [37}. The kinematical equations are developed by
geometrical relationship between Cartesian space and joint pace [38].
They can be cxpressed in general as:

Forward kinematics x(1)=F(8(1)) 61
v(1)=F2(6(t), w(1)) (62)
1()=F3(8(1), (1), a(t)) (63)

where x(t), v(1), and a(t) are vecton of positions, velocities and
accelerations of the end-effector in Cartesian space. 8(t), o{t), and aft) are
vectors of angles, angular velocities and angular accelerations in joint
spacs.

F are functions. For a two-link planar robotic manipulator [40] {Fig.1.):

G) ~(imormmonon ) ©
(e oo Toeosterots Lo ) (69
0 y(-lisin®y -lasin(8;+82)
('y )’(hcom Lzcos(81+62) anﬂu)
ljco88) 1c08(81+82) 0?2

'(wnel 138in(8)+82) I(m,m;)z) (86)
Inverse kinematics 8(t)=G(x(1)) (67)
o()=Ga(x(t), v(1)} (68)
a{t)=G3(x(t), v(t), a(V)) (69)
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G arc functions which depend on the configuration (like: elbow-down). For
a two-link robotic manipulater in elbow-down position (Fig.1.):

123in@
=tan-l -
oy=tan!d) - tan o, where, (70)
2.1,2.142
8;=cos- 1("1* 1‘ 12 7

o ) H 12c08(0)+82) I28in(81+82)
@ ) 11128in03| -l1c0361-12c08(6)+82) -112inB -128in(8;+672)

Vx
¥ ("y ) an
12c08(8)+62) 178in(61+82) Yax
alm; l1lzsm82 -ljcos@y -11sin®; ay )
i 1jl2c0882 122
+1xlzsine1‘ 12 -11l2co0s62 (m]mn,)2 a3
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